Rutgers University: Algebra Written Qualifying Exam
 January 2006: Day 1 Problem 1 Solution

Exercise. How many different Sylow 2-subgroups and Sylow 5-subgroups are there in a noncommutative group of order 20? Explain your answer.

Solution.

Let G be a group of order 20 .

$$
20=2^{2} \cdot 5
$$

By the third Sylow theorem,

$$
\begin{aligned}
& n_{2} \equiv 1 \bmod 2 \quad \text { and } \quad n_{2} \mid 5 \quad \Longrightarrow \quad n_{3}=1 \text { or } 5 \\
& n_{5} \equiv 1 \bmod 5 \quad \text { and } \quad n_{5} \mid 4 \quad \Longrightarrow \quad n_{5}=1
\end{aligned}
$$

If $n_{2}=1$ then $\exists P_{2}, P_{5}$ and P_{2}, P_{5} both normal.

$$
\Longrightarrow G=P_{2} P_{5}=P_{5} P_{2} \cong P_{5} \times P_{2}
$$

where $\left|P_{5}\right|=5 \Longrightarrow P_{5}$ cyclic $\Longrightarrow P_{5}$ abelian and $\left|P_{2}\right|=4 \Longrightarrow P_{2}=\{e, x, y, z\}$.

If P_{2} has an eleemnt of order 4 then P_{2} is cyclic and therefore abelian
Otherwise, x, y, z must have order 2
But then $x y \neq x, y$, or e by cancellation laws

$$
\Longrightarrow x y=z
$$

Similarly, $y x=z$.
$\Longrightarrow x y=y x$ and P_{2} is abelian.
But then $G \cong P_{5} \times P_{2}$ must also be abelian.
Since we were given that G is not abelian, this is a contradiction!
Thus, $n_{2} \neq 1$ and so $n_{2}=5$.
In other words, G has one Sylow 5 -subgroup and 5 Sylow 2-subgroups.

