Rutgers University: Algebra Written Qualifying Exam January 2006: Day 1 Problem 1 Solution

Exercise. How many different Sylow 2-subgroups and Sylow 5-subgroups are there in a noncommutative group of order 20? Explain your answer.

Solution. Let G be a group of order 20. $20 = 2^2 \cdot 5$ By the third Sylow theorem, $n_2 \equiv 1 \mod 2$ $n_2 \mid 5$ and $n_3 = 1 \text{ or } 5$ $n_5 \equiv 1 \mod 5$ $n_5 \mid 4$ \implies $n_5 = 1$ and If $n_2 = 1$ then $\exists P_2, P_5$ and P_2, P_5 both normal. $\implies G = P_2 P_5 = P_5 P_2 \cong P_5 \times P_2$ where $|P_5| = 5 \implies P_5$ cyclic $\implies P_5$ abelian and $|P_2| = 4 \implies P_2 = \{e, x, y, z\}.$ If P_2 has an element of order 4 then P_2 is cyclic and therefore abelian Otherwise, x, y, z must have order 2 But then $xy \neq x, y$, or e by cancellation laws $\implies xy = z$ Similarly, yx = z. $\implies xy = yx$ and P_2 is abelian. But then $G \cong P_5 \times P_2$ must also be abelian. Since we were given that G is not abelian, this is a contradiction! Thus, $n_2 \neq 1$ and so $n_2 = 5$. In other words, G has one Sylow 5-subgroup and 5 Sylow 2-subgroups.